MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Boiler Efficiency and Performance Optimization in District Heating and Cooling Systems With Machine Learning Models

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
Bölümde çağdaş teknolojik gelişmeler doğrultusunda, teknolojiyi yakından takip ederek yeni teknoloji ve uygulamaların geliştirilmesine katkı sağlamak amacıyla, nitelikli bilgisayar mühendisleri yetiştirilmesi amaçlanmaktadır. Eğitimler kapsamında, özellikle yapay zeka, makine öğrenmesi, derin öğrenme, görüntü işleme, sinyal işleme, büyük veri ve veri madenciliği, nesnelerin interneti gibi teknolojik konularda hem teorik hem de uygulamalı bir eğitim modeli hedeflenmektedir.

Journal Issue

Events

Abstract

This study focuses on the detection and analysis of boiler efficiency degradation in District Heating and Cooling (DHC) substations. The research presents an innovative approach to optimize boiler efficiency under different scenarios. Although DHC systems provide both heating and cooling services, this study focuses specifically on heating substations. In this context, various machine learning algorithms have been applied to effectively detect boiler efficiency degradation, and hyper-parameter adjustments have been performed using Bayesian optimization to improve the performance of the models. As a result of the analyses, the Gradient Boosting Regressor model showed significantly higher performance compared to other machine learning algorithms. The model successfully predicted the decline in boiler efficiency with an accuracy of 97.8%, and the Matthews Correlation Coefficient (MCC) value was recorded as 0.952. These results show that Gradient Boosting Regressor based approaches provide an effective solution for fault detection and diagnosis in district heating systems. In conclusion, this study provides both theoretical and practical contributions to the optimization of boiler efficiency, fault detection and diagnosis in DHC systems. The solutions offered by the study have the potential to increase the reliability and efficiency of the systems.

Description

Keywords

District Heating And Cooling (DHC), Boiler Efficiency, Machine Learning, Bayesian Optimization, Fault Detection

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Q2

Source

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.