MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Boiler Efficiency and Performance Optimization in District Heating and Cooling Systems With Machine Learning Models

dc.authorscopusid 58083655800
dc.authorscopusid 57200142934
dc.authorscopusid 59221704100
dc.authorwosid Aslan, Emrah/Hpg-5766-2023
dc.authorwosid Alpsalaz, Feyyaz/Ldg-5760-2024
dc.contributor.author Aslan, Emrah
dc.contributor.author Oezuepak, Yildirim
dc.contributor.author Alpsalaz, Feyyaz
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2025-07-15T19:13:31Z
dc.date.available 2025-07-15T19:13:31Z
dc.date.issued 2025
dc.department Artuklu University en_US
dc.department-temp [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Mardin, Turkiye; [Oezuepak, Yildirim] Dicle Univ, Silvan Vocat Sch, Diyarbakir, Turkiye; [Alpsalaz, Feyyaz] Yozgat Bozok Univ, Akdagmadeni Vocat Sch, Yozgat, Turkiye en_US
dc.description.abstract This study focuses on the detection and analysis of boiler efficiency degradation in District Heating and Cooling (DHC) substations. The research presents an innovative approach to optimize boiler efficiency under different scenarios. Although DHC systems provide both heating and cooling services, this study focuses specifically on heating substations. In this context, various machine learning algorithms have been applied to effectively detect boiler efficiency degradation, and hyper-parameter adjustments have been performed using Bayesian optimization to improve the performance of the models. As a result of the analyses, the Gradient Boosting Regressor model showed significantly higher performance compared to other machine learning algorithms. The model successfully predicted the decline in boiler efficiency with an accuracy of 97.8%, and the Matthews Correlation Coefficient (MCC) value was recorded as 0.952. These results show that Gradient Boosting Regressor based approaches provide an effective solution for fault detection and diagnosis in district heating systems. In conclusion, this study provides both theoretical and practical contributions to the optimization of boiler efficiency, fault detection and diagnosis in DHC systems. The solutions offered by the study have the potential to increase the reliability and efficiency of the systems. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/02533839.2025.2514535
dc.identifier.issn 0253-3839
dc.identifier.issn 2158-7299
dc.identifier.scopus 2-s2.0-105007517833
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1080/02533839.2025.2514535
dc.identifier.uri https://hdl.handle.net/20.500.12514/9061
dc.identifier.wos WOS:001503323000001
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject District Heating And Cooling (DHC) en_US
dc.subject Boiler Efficiency en_US
dc.subject Machine Learning en_US
dc.subject Bayesian Optimization en_US
dc.subject Fault Detection en_US
dc.title Boiler Efficiency and Performance Optimization in District Heating and Cooling Systems With Machine Learning Models en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files